If it's not what You are looking for type in the equation solver your own equation and let us solve it.
320(t)=5t^2
We move all terms to the left:
320(t)-(5t^2)=0
determiningTheFunctionDomain -5t^2+320t=0
a = -5; b = 320; c = 0;
Δ = b2-4ac
Δ = 3202-4·(-5)·0
Δ = 102400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{102400}=320$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(320)-320}{2*-5}=\frac{-640}{-10} =+64 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(320)+320}{2*-5}=\frac{0}{-10} =0 $
| m+45=72 | | 52=‐5x-3 | | 8g+3=-45 | | 2–7x+3=6-(4–x) | | 9p=57.6 | | 9+3/4x=7/4x-6 | | 11-5t=-4 | | 8r-5=21 | | 9―6y=27 | | 5x+5=22x | | 9-5m=-6 | | a4=24 | | 4n=10=34 | | 3=8+(-9.8)t | | 4n=10=¯34 | | 10-7w=-39 | | 4x+2-16=55 | | 5r-14.50=327.45 | | t/11+10=12 | | x+6÷x²+5x+6=0 | | 9y+10=11+2y | | x311=x3 | | 64n=40^15 | | 5l=50 | | -4.4x=440 | | 6p+3=-21 | | 20=4.2-2.2x | | 8d+6=-10 | | -5p=-111 | | x4(2−x)+1=2x+2−5(1−4x) | | 40-2x=3x+15 | | 4k-1=35 |